A Condition of Boshernitzan and Uniform Convergence in the Multiplicative Ergodic Theorem

نویسنده

  • DAVID DAMANIK
چکیده

This paper is concerned with uniform convergence in the multiplicative ergodic theorem on aperiodic subshifts. If such a subshift satisfies a certain condition, originally introduced by Boshernitzan, every locally constant SL(2,R)-valued cocycle is uniform. As a consequence, the corresponding Schrödinger operators exhibit Cantor spectrum of Lebesgue measure zero. An investigation of Boshernitzan’s condition then shows that these results cover all earlier results of this type and, moreover, provide various new ones. In particular, Boshernitzan’s condition is shown to hold for almost all circle maps and almost all Arnoux-Rauzy subshifts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

The Uniform Ergodic Theorem for Dynamical Systems

Necessary and sufficient conditions are given for the uniform convergence over an arbitrary index set in von Neumann’s mean and Birkhoff’s pointwise ergodic theorem. Three different types of conditions already known from probability theory are investigated. Firstly it is shown that the property of being eventually totally bounded in the mean is necessary and sufficient. This condition involves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006